4.7 Article Proceedings Paper

Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor

Journal

APPLIED SURFACE SCIENCE
Volume 380, Issue -, Pages 223-228

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.01.130

Keywords

Silver nanowire; Flexible transparent electrode; Colorless polyimide; Touch sensor; Plasma treatment

Ask authors/readers for more resources

Silver nanowire (AgNW) network is known for its low percolation threshold, high conductivity and good flexibility, therefore, considered one of the best candidates for fabrication of flexible and transparent electrodes. However, a general approach to make the AgNWs-based electrodes, an overcoating of nanowire dispersion onto a transparent polymer, should make an issue of poor mechanical stability, mainly caused by low adhesion between the nanowires and polymer. In addition, a thin insulating layer of polyvinylpyrrolidone (PVP) formed on the surface of AgNWs deteriorates the conductivity of their network, which means that a post-processing such as high temperature annealing is essentially needed. Here we employed a plasma treatment with an inert gas to remove the residual PVP layer, so that the conductivity could be enhanced without employing any high temperature processing. Interestingly, the optical transmittance in the wavelength near 400 nm was also increased, resulting in more neutral coloration of the electrode. An inverted layer processing made the nanowires to be partially buried at the surface of colorless polyimide (cPI), so that the enhancement of mechanical stability and connectivity with overlying materials were simultaneously achieved. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available