4.8 Article

Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers

Journal

JOURNAL OF POWER SOURCES
Volume 427, Issue -, Pages 309-317

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.04.094

Keywords

PEM fuel cell; MEA; Screen-printing; Freeze-drying; Drying electrode; Mass transport

Funding

  1. DAAD
  2. ERA SUMS

Ask authors/readers for more resources

The widespread commercialisation of proton exchange membrane fuel cell (PEMFC) for either transportation or stationary application is still hindered by cost barriers owing to the use of precious metal catalysts, as well as performance and material related insufficient durability. Therefore, it is important to enhance the platinum utilization as well as optimize the fabrication method for the production of membrane electrode assemblies (MEAs). This study demonstrates that the drying step during the electrode manufacturing directly affects the microstructure of the catalyst layer, having inherent influence on the porosity and the platinum utilization during PEMFC operation that greatly affects the performance. Freeze-drying as a novel drying technique for PEMFC electrodes is proposed for preparation of low Pt-loaded cathodes (0.160 mg(p)(t).cm(-2)). This technique possesses the unique feature of solvent removal via sublimation and not only generates 3.5-fold higher effective porosities but also increases the electrochemical surface area by 1.5 times when comparing to electrode dried by regular oven drying technique. Additionally, freeze-drying of electrode also improved ionomer distribution, as evident from a reduced resistance between the pores and a reduced electrolyte resistance of the catalyst layer. Consequently, we consider freeze-drying to be a highly promising technique for future production of MEAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available