4.7 Article

Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

Journal

APPLIED SURFACE SCIENCE
Volume 366, Issue -, Pages 202-209

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2016.01.047

Keywords

Langmuir-Blodgett films; Glucose oxidase; Gold nanoparticles; Composite film; Architecture effect

Funding

  1. National Science Council of Taiwan [NSC103-2221-E-006-248-MY3]
  2. Headquarters of University Advancement at National Cheng Kung University - Ministry of Education, Taiwan

Ask authors/readers for more resources

The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine ( ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/G0x) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (alpha-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/G0x) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/G0x-AuNP). (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available