4.7 Article

Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0.5Co0.2Mn0.3O2 cathode materials

Journal

APPLIED SURFACE SCIENCE
Volume 371, Issue -, Pages 172-179

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.02.224

Keywords

LiNi0.5Co0.2MnO0.3O2; Fluorine doping; Lithium slab; High voltage; Electrochemical performances

Funding

  1. National Basic Research Program of China (973 Program) [2014CB643406]
  2. Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (Plan of Hunan Province)

Ask authors/readers for more resources

A strategy of surface fluorine substitution to enhance the high voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 material has been proposed. The inter-slab spacing distance is broaden by fluorine doping, which is deduced from the lattice parameters calculated by Rietveld refinement method. Scanning electron microscopy indicates the fluorine substitution stimulates the growth of the primary particles. Though the initial discharge capacities of LiNi0.5Co0.2Mn0.3O2-zFz (z = 0.02, 0.04, 0.06) is somewhat reduced, the capacity retention under high oxidation state were improved compared to that of bare one. For the optimal composition of LiNi0.5Co0.2Mn0.3O1.98F0.02, it exhibits a capacity retention of 81.1% at 1C after 100 cycles and delivers a discharge capacity of 123.5 mAh g(-1) at 10C, and that of bare sample are just 70.1% and 109.6 mAh g(-1), respectively. Cyclic voltammetry and electron impedance spectroscopy measurements demonstrate that the fluorine doping could significantly lower the cell polarization and retard the impedance rise. Transmission electron microscope analysis of cycled electrodes is also performed and it implies that fluorine substitution can effectively safeguard the electrode from HF erosion to maintain the bulk structural stable permanently. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available