4.5 Article

Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.119.259796

Keywords

-

Funding

  1. Minnesota Ovarian Cancer Alliance
  2. National Institutes of Health [R01EB022558]
  3. Betty and Terry Noble Gift for Ovarian Cancer Research

Ask authors/readers for more resources

Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available