4.5 Article

Modeling oil saturation evolution in residual oil zones: Implications for CO2 EOR and sequestration

Journal

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING
Volume 177, Issue -, Pages 528-539

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.petrol.2019.02.072

Keywords

Oil saturation; Residual oil zone; CO2 EOR and storage; Flow modeling; Capillary pressure heterogeneity

Funding

  1. U.S. Department of Energy contract under DOE [FE0024375]
  2. Jackson School of Geological Sciences at The University of Texas at Austin

Ask authors/readers for more resources

Residual oil zones (ROZs) are extensively developed in carbonate formations in the Permian Basin, West Texas. These ROZs have the potential both for economically-viable CO2 enhanced oil recovery (CO2-EOR) and for significant volumes of associated CO2 sequestration. The accepted model for ROZ formation is based on the hydrodynamic effects of tectonically-controlled increased water flow in aquifers at the base of oil fields. The nature of this process is modelled using a commercial reservoir simulator in this work. These simulations explore the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil saturations in ROZs. A special emphasis was on understanding the impact of heterogeneity of capillary pressures in ROZ reservoirs. These factors determine the thickness of ROZs, the magnitude of oil saturation, and the slope of water-oil contacts. Understanding the magnitude of oil saturation and how it varies within ROZs is important in determining reserves, and evaluating both EOR and sequestration potential. The geometry of ROZs are established slowly, especially for small regional water fluxes, however oil saturations achieve almost steady states in relatively short time scales. The simulated oil saturation profiles found in this study are in reasonable agreement with the measured profile published for the San Andres Seminole Unit's ROZ. The results support the plausibility of the hydrodynamic model, but do not rule out other models for the origin of ROZs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available