4.7 Article

Peyssonnosides A-B, Unusual Diterpene Glycosides with a Sterically Encumbered Cyclopropane Motif: Structure Elucidation Using an Integrated Spectroscopic and Computational Workflow

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 84, Issue 13, Pages 8531-8541

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.9b00884

Keywords

-

Funding

  1. International Cooperative Biodiversity Groups (ICBG) from the U.S. National Institutes of Health [U19-TW007401]
  2. Bill & Melinda Gates Foundation, Seattle, WA [OPP1107194]

Ask authors/readers for more resources

Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow, revealed that peyssonnosides A-B (1-2) represent a new class of diterpene glycosides with a tetracyclo [7.5.0.0(1,10).0(5,9)] tetradecane architecture. A salient feature of this workflow is the unique application of quantitative interproton distances obtained from the rotating frame Overhauser effect spectroscopy (ROESY) NMR experiment, wherein the beta-D-glucose moiety of 1 was used as an internal probe to unequivocally determine the absolute configuration, which was also supported by optical rotatory dispersion (ORD). Peyssonnoside A (1) exhibited promising activity against liver stage Plasmodium berghei and moderate antimethicillin-resistant Staphylococcus aureus (MRSA) activity, with no cytotoxicity against human keratinocytes. Additionally, 1 showed strong growth inhibition of the marine fungus Dendryphiella salina indicating an antifungal ecological role in its natural environment. The high natural abundance and novel carbon skeleton of 1 suggests a rare terpene cyclase machinery, exemplifying the chemical diversity in this phylogenetically distinct marine red alga.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available