4.4 Article

Metabolic constraints on synaptic learning and memory

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 122, Issue 4, Pages 1473-1490

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00092.2019

Keywords

cascade models; energy cost of learning and memory; entropy production; memory lifetime; molecular mechanisms of synaptic plasticity

Funding

  1. Polish National Science Centre (NCN) [2015/17/B/NZ4/02600]

Ask authors/readers for more resources

Dendritic spines, the carriers of long-term memory, occupy a small fraction of cortical space, and yet they are the major consumers of brain metabolic energy. What fraction of this energy goes for synaptic plasticity, correlated with learning and memory? It is estimated here based on neurophysiological and proteomic data for rat brain that, depending on the level of protein phosphorylation, the energy cost of synaptic plasticity constitutes a small fraction of the energy used for fast excitatory synaptic transmission, typically 4.0-11.2%. Next, this study analyzes a metabolic cost of new learning and its memory trace in relation to the cost of prior memories, using a class of cascade models of synaptic plasticity. It is argued that these models must contain bidirectional cyclic motifs, related to protein phosphorylation, to be compatible with basic thermodynamic principles. For most investigated parameters longer memories generally require proportionally more energy to store. The exceptions are the parameters controlling the speed of molecular transitions (e.g., ATP-driven phosphorylation rate), for which memory lifetime per invested energy can increase progressively for longer memories. Furthermore, in general, a memory trace decouples dynamically from a corresponding synaptic metabolic rate such that the energy expended on new learning and its memory trace constitutes in most cases only a small fraction of the baseline energy associated with prior memories. Taken together, these empirical and theoretical results suggest a metabolic efficiency of synaptically stored information. NEW & NOTEWORTHY Learning and memory involve a sequence of molecular events in dendritic spines called synaptic plasticity. These events are physical in nature and require energy, which has to be supplied by ATP molecules. However, our knowledge of the energetics of these processes is very poor. This study estimates the empirical energy cost of synaptic plasticity and considers theoretically a metabolic rate of learning and its memory trace in a class of cascade models of synaptic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available