4.6 Article

3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions

Journal

APPLIED SOIL ECOLOGY
Volume 105, Issue -, Pages 67-75

Publisher

ELSEVIER
DOI: 10.1016/j.apsoil.2016.03.018

Keywords

Nitrification inhibitor; Non-target effect; 3,4-dimethylpyrazole phosphate (DMPP); amoA; Ammonia oxidizing archaea; Ammonia oxidizing bacteria

Categories

Funding

  1. Danish Council for Independent Research [12-127378]

Ask authors/readers for more resources

The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is widely used within agriculture to reduce nitrate leaching and improve nitrogen use efficiency of fertilizers, but few studies examined effects on non-target soil functions and microorganisms, i.e. other than the intended delay of ammonia oxidation. We investigated effects of DMPP amendment equivalent to 0 (Control), 1 (regular dose, RD) or 10 (high dose, HD) kg ha(-1) in a sandy loam grassland soil at 50% water-filled pore space. Following incubation for 1, 7 or 14 d, soil was analyzed for fluorescein diacetate hydrolysis, dehydrogenase activity, phospholipid fatty acid composition and potential ammonia oxidation. DMPP showed no significant nontarget effects (p > 0.05), but a possible stress response in HD was indicated by a factor analysis of phospholipid fatty acid composition. There was a strong DMPP inhibition on potential ammonia oxidation which was still significant (p < 0.05) in HD after 14 d. In separate treatments receiving 50 mg NH4+-N kg(-1) dry soil in addition to DMPP, the inhibition of nitrate accumulation was similar in RD and HD at around 75%. Abundances of the gene amoA from ammonia oxidizing bacteria (AOB) and archaea (AOA) were quantified, and cell-specific nitrification rates were estimated. There was a general trend of increasing AOA and AOB abundance towards the end of incubation irrespective of DMPP treatment, whereas cell-specific activity of AOA and/or AOB was reduced in the presence of DMPP. Overall, this study indicated that DMPP effectively inhibited nitrification activity without effects on ammonia oxidizer populations, as well as non-target soil microorganisms or functions. (c) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available