4.2 Article

NUMERICAL SIMULATION OF APPARENT DENSITY EVOLUTION OF TRABECULAR BONE UNDER FATIGUE LOADING: EFFECT OF BONE INITIAL PROPERTIES

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219519419500416

Keywords

Bone remodeling; finite element method; Young's modulus; mineral density

Ask authors/readers for more resources

Bone remodeling is a physiological phenomenon coupling resorption and formation processes that are mainly mediated by osteoclasts and osteoblasts, in response to mechanical stimuli transduced by osteocytes to biochemical signals activating the bone multicellular unit. Under normal loading conditions, bone resorption and formation are balanced by a homeostasis process. When bone is subjected to overstress, microdamaging occurs, which induces a modification of the structural integrity and microarchitecture. This has drawn significant attention to the mechanical properties of bone. In this context, the current study has been carried out with the aim of numerically investigating the impact of the mechanical properties on the remodeling process of the trabecular bone under cyclic loading, highlighting the effects of different values of the mineral density and the Young's modulus. This was performed using a mechanobiological model, coupling mechanical and biological approaches, allowing to numerically simulate the effect of the selected parameters for a 20-year-period of cyclic loading for 2D and 3D models of a human femur head. The current work is an explorative numerical study, and the obtained results revealed the changes in the overall stiffness of the bone according to the mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available