4.7 Article

Krill herd algorithm for optimal location of distributed generator in radial distribution system

Journal

APPLIED SOFT COMPUTING
Volume 40, Issue -, Pages 391-404

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.asoc.2015.11.036

Keywords

Radial distribution system; Distributed generators; Loss reduction; Evolutionary algorithms; Krill herd algorithm; Differential evolution

Ask authors/readers for more resources

Distributed generator (DG) is recognized as a viable solution for controlling line losses, bus voltage, voltage stability, etc. and represents a new era for distribution systems. This paper focuses on developing an approach for placement of DG in order to minimize the active power loss and energy loss of distribution lines while maintaining bus voltage and voltage stability index within specified limits of a given power system. The optimization is carried out on the basis of optimal location and optimal size of DG. This paper developed a new, efficient and novel krill herd algorithm (KHA) method for solving the optimal DG allocation problem of distribution networks. To test the feasibility and effectiveness, the proposed KH algorithm is tested on standard 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results indicate that installing DG in the optimal location can significantly reduce the power loss of distributed power system. Moreover, the numerical results, compared with other stochastic search algorithms like genetic algorithm (GA), particle swarm optimization (PSO), combined GA and PSO (GA/PSO) and loss sensitivity factor simulated annealing (LSFSA), show that KHA could find better quality solutions. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available