4.7 Article

A chaos based image encryption and lossless compression algorithm using hash table and Chinese Remainder Theorem

Journal

APPLIED SOFT COMPUTING
Volume 40, Issue -, Pages 379-390

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2015.09.055

Keywords

Chaos; Chinese Remainder Theorem; Lorenz equations; Hyper chaos; Hash table

Ask authors/readers for more resources

A chaos based image encryption and lossless compression algorithm using hash table and Chinese Remainder Theorem is proposed. Initially, the Henon map is used to generate the scrambled blocks of the input image. The scrambled block undergoes a fixed number of iterations based on the plain image using Arnold cat map. Since hyper chaos system has complex dynamical characteristics than chaos, the confused image is further permuted using the index sequence generated by the hyper chaos along with hash table structure. The permuted image is divided into blocks and the diffusion is carried out either by using Lorenz equations or by using another complex matrix generated from the plain image appropriately. Along with diffusion, compression is also carried out by Chinese Remainder Theorem for each block. This encryption algorithm has high key space, good NPCR and UACI values and very less correlation among adjacent pixels. Simulation results show the high effectiveness and security features of the proposed algorithm. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available