4.7 Article

Fast simulated annealing hybridized with quenching for solving job shop scheduling problem

Journal

APPLIED SOFT COMPUTING
Volume 49, Issue -, Pages 510-523

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2016.08.037

Keywords

Job-shop scheduling problem (JSSP); Cauchy probability density function; Fast simulated annealing (FSA); Hybridization; Makesspan; Quenching; Simulated annealing

Ask authors/readers for more resources

Various heuristic based methods are available in literature for optimally solving job shop scheduling problems (JSSP). In this research work a novel approach is proposed which hybridizes fast simulated annealing (FSA) with quenching. The proposed algorithm uses FSA for global search and quenching for localized search in neighborhood of current solution, while tabu list is used to restrict search from revisiting previously explored solutions. FSA is started with a relatively higher temperature and as search progresses temperature is gradually reduced to a value close to zero. The overall best solution (BS) is maintained throughout execution of the algorithm. If no improvement is observed in BS for certain number of iterations then quenching cycle is invoked. During quenching cycle current temperature is reduced to nearly freezing point and iterations are increased by many folds, as a result of this change search becomes nearly greedy. The strength of the proposed algorithm is that even in quenching mode escape from local optima is possible due to use of Cauchy probability distribution and non-zero temperature. At the completion of quenching cycle previous values of search parameters are restored and FSA takes over, which moves search into another region of solution space. Effectiveness of proposed algorithm is established by solving 88 well known benchmark problems taken form published work. The proposed algorithm was able to solve 45 problems optimally to their respective best known values in reasonable time. The proposed algorithm has been compared with 18 other published works. The experimental results show that the proposed algorithm is efficient in finding solution to JSSP. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available