4.7 Article

Rotational stabilisation of the Rayleigh-Taylor instability at the inner surface of an imploding liquid shell

Journal

JOURNAL OF FLUID MECHANICS
Volume 873, Issue -, Pages 531-567

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.346

Keywords

bubble dynamics; nonlinear instability

Funding

  1. General Fusion
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) [477617-14]

Ask authors/readers for more resources

A number of applications utilise the energy focussing potential of imploding shells to dynamically compress matter or magnetic fields, including magnetised target fusion schemes in which a plasma is compressed by the collapse of a liquid metal surface. This paper examines the effect of fluid rotation on the Rayleigh-Taylor (RT) driven growth of perturbations at the inner surface of an imploding cylindrical liquid shell which compresses a gas-filled cavity. The shell was formed by rotating water such that it was in solid body rotation prior to the piston-driven implosion, which was propelled by a modest external gas pressure. The fast rise in pressure in the gas-filled cavity at the point of maximum convergence results in an RT unstable configuration where the cavity surface accelerates in the direction of the density gradient at the gas-liquid interface. The experimental arrangement allowed for visualisation of the cavity surface during the implosion using high-speed videography, while offering the possibility to provide geometrically similar implosions over a wide range of initial angular velocities such that the effect of rotation on the interface stability could be quantified. A model developed for the growth of perturbations on the inner surface of a rotating shell indicated that the RT instability may be suppressed by rotating the liquid shell at a sufficient angular velocity so that the net surface acceleration remains opposite to the interface density gradient throughout the implosion. Rotational stabilisation of high-mode-number perturbation growth was examined by collapsing nominally smooth cavities and demonstrating the suppression of small spray-like perturbations that otherwise appear on RT unstable cavity surfaces. Experiments observing the evolution of low-mode-number perturbations, prescribed using a mode-6 obstacle plate, showed that the RT-driven growth was suppressed by rotation, while geometric growth remained present along with significant nonlinear distortion of the perturbations near final convergence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available