4.7 Article

Effects of surfactant on propagation and rupture of a liquid plug in a tube

Journal

JOURNAL OF FLUID MECHANICS
Volume 872, Issue -, Pages 407-437

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2019.333

Keywords

capillary flows; gas/liquid flow; pulmonary fluid mechanics

Funding

  1. NIH [HL136141]
  2. Scientific and Technical Research Council of Turkey (TUBITAK) [115M688]

Ask authors/readers for more resources

Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied computationally using a front-tracking method. The plug is driven by an applied constant pressure in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier Stokes equations are solved in the front-tracking framework. The numerical method is first validated for a surfactant-free case and the results are found to be in good agreement with the earlier simulations of Fujioka et al. (Phys. Fluids, vol. 20, 2008, 062104) and Hassan et al. (Intl J. Numer. Meth. Fluids, vol. 67, 2011, pp. 1373-1392). Then extensive simulations are performed to investigate the effects of surfactant on the mechanical stresses that could be injurious to epithelial cells, such as pressure and shear stress. It is found that the liquid plug ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount of surfactant significantly reduces the pressure and shear stress and thus improves cell survivability. However, addition of surfactant also delays the plug rupture and thus airway reopening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available