4.7 Article

Reducing adverse side effects by seasonally lowering nitrate removal in subsurface flow constructed wetlands

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 240, Issue -, Pages 190-197

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.03.081

Keywords

Mitigation measure; Sulphate reduction; Indirect methane emission; Phosphorus; Hydraulic retention time

Funding

  1. Danish Strategic Research Council [09-067280]
  2. Ministry of Environment and Food of Denmark [33010-NIFA-16-649]
  3. NordForsk [82263]

Ask authors/readers for more resources

Subsurface flow constructed wetlands with wood chips (SSF-CWs) have proven to effectively reduce the loss of nitrogen (N) from agricultural fields to surface water, however in some cases production of negative side effects such as methane and phosphate occur. We examined if these side effects can be avoided by decreasing the hydraulic retention time (HRT) from on average 82 h to 11 h during summer to autumn in two pilot SSF-CWs. Furthermore, we investigated the potential of the SSF-CWs to reduce phosphorus (P) loss from agricultural drainage systems. The influent and effluent concentration of total N (TN), nitrate-N, total P, phosphate-P, suspended sediment, and sulphate were monitored for five years (2013-2017). Methane concentrations were measured during two periods in 2014 and 2017. Flow was measured continuously by electromagnetic flow meters. The nitrate-N removal was reduced from 98-100% to 27-32% and the sulphate reduction from 32-53% to 1-2% when decreasing HRT. Concurrently this resulted in a considerable decrease in the difference between the effluent and influent concentration of phosphate-P and methane concentration compared to similar periods in the preceding years. The SSF-CWs retained 67-85% of the annual loading of particulate P, but acted as both a sink and source of phosphate-P, thus further initiatives are therefore required to prevent phosphate-P release from SSF-CWs. Although during the entire monitoring period the SSF-CWs retained 29-33% of the total P loading. In summary, this study stresses how important a holistic approach is when implementing and designing new N mitigation measures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available