4.6 Article

Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation

Journal

JOURNAL OF DIGITAL IMAGING
Volume 33, Issue 1, Pages 168-180

Publisher

SPRINGER
DOI: 10.1007/s10278-019-00250-y

Keywords

Retinal vessel; Deep learning; Enhancement; Fully convolved neural network

Ask authors/readers for more resources

Retinal blood vessel extraction is considered to be the indispensable action for the diagnostic purpose of many retinal diseases. In this work, a parallel fully convolved neural network-based architecture is proposed for the retinal blood vessel segmentation. Also, the network performance improvement is studied by applying different levels of preprocessed images. The proposed method is experimented on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the Retina) which are the widely accepted public database for this research area. The proposed work attains high accuracy, sensitivity, and specificity of about 96.37%, 86.53%, and 98.18% respectively. Data independence is also proved by testing abnormal STARE images with DRIVE trained model. The proposed architecture shows better result in the vessel extraction irrespective of vessel thickness. The obtained results show that the proposed work outperforms most of the existing segmentation methodologies, and it can be implemented as the real time application tool since the entire work is carried out on CPU. The proposed work is executed with low-cost computation; at the same time, it takes less than 2 s per image for vessel extraction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available