4.6 Article

Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease

Journal

JOURNAL OF CROHNS & COLITIS
Volume 14, Issue 2, Pages 240-253

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ecco-jcc/jjz132

Keywords

Inflammatory bowel disease; neutrophil extracellular traps; hypercoagulable state

Funding

  1. National Science Foundation of China [81470301, 81670128, 81873433]
  2. Graduate Innovation Fund of Harbin Medical University [YJSCX2014-02HYD]

Ask authors/readers for more resources

Background and Aims Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previous study to prove that NETs constitute a central component in the progression and prothrombotic state of IBD. Methods In all 48 consecutive patients with IBD were studied. Acute colitis was induced by the treatment of C57BL/6 mice with 3.5% dextran sulphate sodium [DSS] in drinking water for 6 days. Peripheral blood neutrophils and sera were collected from IBD patients and murine colitis models. Exposed phosphatidylserine [PS] was analysed with flow cytometry and confocal microscopy. Procoagulant activity was evaluated using clotting time, purified coagulation complex, and fibrin formation assays. Results We observed higher plasma NET levels and presence of NETs in colon tissue in patients with active IBD. More importantly, NETs were induced in mice with DSS colitis, and inhibition of NET release attenuated colitis as well as colitis-associated tumorigenesis. NET degradation through DNase administration decreased cytokine levels during DSS-induced colitis. In addition, DNase treatment also significantly attenuated the accelerated thrombus formation and platelet activation observed in DSS-induced colitis. NETs triggered PS-positive microparticle release and PS exposure on platelets and endothelial cells partially through TLR2 and TLR4, converting them to a procoagulant phenotype. Conclusions NETs exacerbate colon tissue damage and drive thrombotic tendency during active IBD. Strategies directed against NET formation may offer a potential therapeutic approach for the treatment of IBD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available