4.6 Article

Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer's disease through inactivating the PI3K/Akt signaling pathway

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 120, Issue 10, Pages 18053-18065

Publisher

WILEY
DOI: 10.1002/jcb.29108

Keywords

Alzheimer's disease; astrocytes; cognitive impairment; hippocampus tissue; lncRNA MEG3; neuronal damage; PI3K; Akt signaling pathway

Ask authors/readers for more resources

Objective The purpose of this study was to elucidate the expression of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in rats with Alzheimer's disease (AD) and to explore its potential mechanisms. Methods An AD rat model was induced by microinjection of A beta(25-35). On the first day after successful modeling, pcDNA3.1 plasmid and pcDNA3.1-MEG3 plasmid were continuously infused into the third ventricle through a micro-osmotic pump to interfere with the expression level of MEG3. The spatial learning ability and memory ability, the histopathological changes of hippocampus tissues, the ultrastructure of hippocampal neurons, astrocyte activation as well as the survival and apoptosis of hippocampal neurons in each group was observed. The expression of apoptosis, PI3/Akt signaling pathway-related proteins, glial fibrillary acidic protein, inflammatory factors, malondialdehyde, glutathione-peroxidase, and superoxide dismutase levels were determined. The deposition of amyloid beta (A beta) in the hippocampus of rats by was observed by A beta immunohistochemical staining. Results Downregulated MEG3 was detected in the tissues of AD rats. In addition, upregulation of MEG3 contributed to an improvement of spatial learning ability and memory ability, inhibited the pathological injury and its apoptosis of hippocampal neurons, decreased A beta positive expression, inhibited oxidative stress injury and inflammatory injury as well as the activated astrocytes in AD rats via inactivation of the PI3/Akt pathway. Conclusion Our study highlights that upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in AD through inhibiting the PI3K/Akt signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available