4.6 Article

Carbon nanotube fiber terahertz polarizer

Journal

APPLIED PHYSICS LETTERS
Volume 108, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4945708

Keywords

-

Funding

  1. DOE BES [DE-FG02-06ER46308]
  2. Robert A. Welch Foundation [C-1509]
  3. W. M. Keck Foundation
  4. Army In-house Laboratory Independent Research Program
  5. AFOSR [AFOSR FA9550-15-1-0370]

Ask authors/readers for more resources

Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of similar to-30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2-1.1 THz. In addition, we used a THz ellipsometer to measure the Muller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available