4.2 Article

Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks

Journal

JOURNAL OF BURN CARE & RESEARCH
Volume 40, Issue 6, Pages 857-863

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jbcr/irz103

Keywords

-

Funding

  1. Analytic Imaging Diagnostic Arena (AIDA)

Ask authors/readers for more resources

We present in this paper the application of deep convolutional neural networks (CNNs), which is a state-of-the-art artificial intelligence (AI) approach in machine learning, for automated time-independent prediction of burn depth. Color images of four types of burn depth injured in first few days, including normal skin and background, acquired by a TiVi camera were trained and tested with four pretrained deep CNNs: VGG-16, GoogleNet, ResNet-50, and ResNet-101. In the end, the best 10-fold cross-validation results obtained from ResNet-101 with an average, minimum, and maximum accuracy are 81.66, 72.06, and 88.06%, respectively; and the average accuracy, sensitivity, and specificity for the four different types of burn depth are 90.54, 74.35, and 94.25%, respectively. The accuracy was compared with the clinical diagnosis obtained after the wound had healed. Hence, application of AI is very promising for prediction of burn depth and, therefore, can be a useful tool to help in guiding clinical decision and initial treatment of burn wounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available