4.6 Article

Acetyl-CoA carboxylase 1-dependent lipogenesis promotes autophagy downstream of AMPK

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 294, Issue 32, Pages 12020-12039

Publisher

ELSEVIER
DOI: 10.1074/jbc.RA118.007020

Keywords

acetyl coenzyme A (acetyl-CoA); acetate; aging; autophagy; lipid metabolism; yeast; Acc1; acetyl-CoA carboxylase 1; AMPK; oleate; Snf1; lipogenesis

Funding

  1. University of Graz
  2. APART program of the Austrian Academy of Sciences (OAW)
  3. Austrian Science Fund (FWF) [P27183-B24, P28854, I3792, W1226]
  4. Austrian Research Promotion Agency (FFG) [864690, 870454]
  5. Integrative Metabolism Research Center Graz
  6. BioTechMed-Graz
  7. Styrian government (Zukunftsfonds)
  8. Swedish Research Council Vetenskapsradet [2015-05468]
  9. Ake Wiberg Stiftelse [M16-0130]
  10. Carl Tryggers Stiftelse [CTS16:85]
  11. Austrian Infrastructure Program
  12. Austrian Science Fund (FWF) [P28854, P27183] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Autophagy, a membrane-dependent catabolic process, ensures survival of aging cells and depends on the cellular energetic status. Acetyl-CoA carboxylase 1 (Acc1) connects central energy metabolism to lipid biosynthesis and is rate-limiting for the de novo synthesis of lipids. However, it is unclear how de novo lipogenesis and its metabolic consequences affect autophagic activity. Here, we show that in aging yeast, autophagy levels highly depend on the activity of Acc1. Constitutively active Acc1 (acc1(S/A)) or a deletion of the Acc1 negative regulator, Snf1 (yeast AMPK), shows elevated autophagy levels, which can be reversed by the Acc1 inhibitor soraphen A. Vice versa, pharmacological inhibition of Acc1 drastically reduces cell survival and results in the accumulation of Atg8-positive structures at the vacuolar membrane, suggesting late defects in the autophagic cascade. As expected, acc1(S/A) cells exhibit a reduction in acetate/acetyl-CoA availability along with elevated cellular lipid content. However, concomitant administration of acetate fails to fully revert the increase in autophagy exerted by acc1(S/A). Instead, administration of oleate, while mimicking constitutively active Acc1 in WT cells, alleviates the vacuolar fusion defects induced by Acc1 inhibition. Our results argue for a largely lipid-dependent process of autophagy regulation downstream of Acc1. We present a versatile genetic model to investigate the complex relationship between acetate metabolism, lipid homeostasis, and autophagy and propose Acc1-dependent lipogenesis as a fundamental metabolic path downstream of Snf1 to maintain autophagy and survival during cellular aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available