4.4 Article

A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications

Journal

JOURNAL OF APPLIED STATISTICS
Volume 47, Issue 2, Pages 354-375

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02664763.2019.1638893

Keywords

Discrete lindley distribution; hazard rate function; L-moment statistics; mean residual lifetime; estimation methods

Ask authors/readers for more resources

This paper introduces a new two-parameter exponentiated discrete Lindley distribution. A wide range of its structural properties are investigated. This includes the shape of the probability mass function, hazard rate function, moments, skewness, kurtosis, stress-strength reliability, mean residual lifetime, mean past lifetime, order statistics and L-moment statistics. The hazard rate function can be increasing, decreasing, decreasing-increasing-decreasing, increasing-decreasing-increasing, unimodal, bathtub, and J-shaped depending on its parameters values. Two methods are used herein to estimate the model parameters, namely, the maximum likelihood, and the proportion. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and proportion estimators. The flexibility of the proposed model is explained by using four distinctive data sets. It can serve as an alternative model to other lifetime distributions in the existing statistical literature for modeling positive real data in many areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available