4.6 Article

Improvement of thermal stability and flame retardancy of polypolypropylene composite modified by ZnO and MoO3 nanowires

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 137, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1002/app.48312

Keywords

flame retardancy; mechanical properties; nanocomposites; ZnO; MoO3 compound

Funding

  1. National Natural Science Foundation of China [51465036]

Ask authors/readers for more resources

Herein, zinc oxide (ZnO) and molybdenum trioxide (MoO3) nanowires were prepared via the hydrothermal method. Then as-prepared ZnO and MoO3 nanowires were fabricated to form ZnO/MoO3 compound nanostructure. ZnO/MoO3 compounds were incorporated into polypropylene (PP) with various loadings by melt blending. The D-Optimal mixing design in Design-Expert software was employed to study the effects of ZnO/MoO3 compound content on flame retardancy and mechanical properties of nanocomposites. Information on performance of thermal stability and flame retardancy of PP/ZnO/MoO3 nanocomposites was obtained through thermogravimetric analysis, cone calorimeter tests, and limiting oxygen index (LOI). The results reflected that the synthesized ZnO/MoO3 compound possessed high thermal stability and flame retardancy. The addition of 15 wt % ZnO nanowires and 13 wt % MoO3 nanowires increased LOI from 18.2 to 23.0%. Meanwhile, the tensile strength of the PP/ZnO/MoO3 nanocomposite decreased by 13.8% and the elongation at break of the PP nanocomposite increased by 20.4% compared with pure PP. Response surface analysis results also indicated that the loading of ZnO/MoO3 compound had an influence on the mechanical properties and flame retardancy of PP. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48312.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available