4.7 Article

Degradation of Dicloran in Irradiated Water-Sediment Systems

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 67, Issue 27, Pages 7609-7615

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b01347

Keywords

dicloran; water-sediment system; photodegradation; shallow water systems; salinity; surface water

Ask authors/readers for more resources

Shallow water systems are uniquely susceptible to environmental processes such as photolysis and hydrolysis that can influence the dissipation of pesticides into sediments. The fungicide dicloran has previously been shown to undergo photolysis and is reported to dissipate in soils and sediments. The photodegradation and dissipation of dicloran in freshwater and seawater was monitored in a laboratory-simulated shallow water system. While no difference was observed between freshwater and seawater systems in the presence of simulated sunlight, the dissipation of dicloran in dark trial systems differed between salinities; 30% of the applied mass dissipated into the sediment in freshwater vs 22% in seawater, and the photodegradation rate and half-life were also impacted by the presence of sediment. The potential for dicloran to dissipate and photodegrade affects the overall behavior of dicloran between waters. Differences in chemical behavior with sediment presence and potential for photodegradation have the capacity to impact organisms within the ecosystem and suggest that these factors may need to be implemented into chemical exposure assessments dependent upon location.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available