4.6 Article

Dynamic control of droplet jumping by tailoring nanoparticle concentrations

Journal

APPLIED PHYSICS LETTERS
Volume 109, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4958691

Keywords

-

Funding

  1. RGC [11213414, 11213915]
  2. National Natural Science Foundation of China [51475401, 51276152]

Ask authors/readers for more resources

The dynamic impact behavior of droplets from solid surfaces has attracted increasing interest, especially propelled by the advances in the bio-inspired interfacial materials. In this work, we investigate the impact and bouncing dynamics of ethylene glycol droplets containing silica nanoparticles on superhydrophobic surfaces (SHS). We find that the rebounding of droplets from SHS is highly dependent on the impact velocity and suspension concentrations. By increasing the impact velocity or suspension concentrations, the probability of droplet bouncing from SHS is greatly reduced. The presence of nanoparticles can significantly increase the viscous energy dissipation inside the liquid droplets, therefore suppressing the jumping from surfaces. Based on the energy dissipation characterization, we also find the critical concentration to determine the manifestation of the viscous effect, above which the liquid suspensions exhibit non-Newtonian fluid properties. Our study provides an efficient approach to dynamically control the liquid jumping behaviors on SHS by tailoring the suspension concentrations. The insights learned from this study can be very useful in many industrial applications. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available