4.7 Article

Epileptic Seizure Detection with EEG Textural Features and Imbalanced Classification Based on EasyEnsemble Learning

Journal

INTERNATIONAL JOURNAL OF NEURAL SYSTEMS
Volume 29, Issue 10, Pages -

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0129065719500217

Keywords

Seizure detection; imbalanced classification; EasyEnsemble learning; textural feature; local binary pattern

Funding

  1. National Natural Science Foundation of China [61501283]
  2. Shandong Provincial Natural Science Foundation [ZR2017LH049]

Ask authors/readers for more resources

Imbalance data classification is a challenging task in automatic seizure detection from electroencephalogram (EEG) recordings when the durations of non-seizure periods are much longer than those of seizure activities. An imbalanced learning model is proposed in this paper to improve the identification of seizure events in long-term EEG signals. To better represent the underlying microstructure distributions of EEG signals while preserving the non-stationary nature, discrete wavelet transform (DWI') and uniform 1D-LBP feature extraction procedure are introduced. A learning framework is then designed by the ensemble of weakly trained support vector machines (SVMs). Under-sampling is employed to split the imbalanced seizure and non-seizure samples into multiple balanced subsets where each of them is utilized to train an individual SVM classifier. The weak SVMs are incorporated to build a strong classifier which emphasizes seizure samples and in the meantime analyzing the unbalanced class distribution of EEG data. Final seizure detection results are obtained in a multi-level decision fusion process by considering temporal and frequency factors. The model was validated over two long-term and one short-term public EEG databases. The model achieved a G-mean of 97.14% with respect to epoch-level assessment, an event-level sensitivity of 96.67%, and a false detection rate of 0.86/h on the long-term intracranial database. An epoch-level G-mean of 95.28% and event-level false detection rate of 0.81/h were yielded over the long-term scalp database. The comparisons with 14 published methods demonstrated the improved detection performance for imbalanced EEG signals and the generalizability of the proposed model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available