4.6 Article

Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni-P nanocomposite coating enhanced by zirconia nanoparticles

Journal

Publisher

SPRINGER
DOI: 10.1007/s12613-019-1805-x

Keywords

Ni-P nanocomposite coatings; ZrO2 nanoparticles; crystalline texture; corrosion resistance; abrasive properties; tribocorrosion behavior

Ask authors/readers for more resources

This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties, crystalline texture developments, and tribocorrosion behavior of Ni-P nanostructured coatings. In the investigation, Ni-P and Ni-P-ZrO2 nanostructured coatings are deposited on St52 steel via the electroless method. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), cyclic-static polarization lests in 3.5wt% NaCl solution, the tribocorrosion test (by back-and-forth wear in electrochemical cell), and the microhardness test using the Vickers method were performed to characterize and analyze the deposited coatings. The results of this study showed that the addition of ZrO2 nanoparticles to the Ni-P electro-less bath produced the following: a sharp increase in wear and hardness resistance, the change of the wear mechanism from sheet to adhesive mode, the reduction of pitting corrosion resistance, significant reduction in the tribocorrosion protective properties, change in the preferred orientation of the crystalline texture coating from (111) to (200), increase in the sedimentation rate during the deposit process, and a sharp increase in the thickness of the Ni-P nanostructured coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available