4.7 Article

Parametric study on combustion characteristics of virtual. HCCI engine fueled with methane-hydrogen blends under low load conditions

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 44, Issue 29, Pages 15511-15522

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.04.137

Keywords

Homogeneous charge compression ignition; Compression ratio; Excess air ratio; Hydrogen; Low load; GRI mechanism

Funding

  1. Chosun University [K207469001-1]

Ask authors/readers for more resources

Homogeneous charge compression ignition (HCCI) is an alternative combustion strategy employed for automotive systems. It has a higher thermal efficiency with lower nitric oxides and particulate matter emissions that are below current emission requirements. However, owing to difficulties associated with combustion control, HCCI engines have disadvantages in terms of combustion instability, such as low-speed-low-load or high-speed-high-load conditions. This study investigates the effects of different parameters on HCCI engine combustion using numerical methods. The parametric study is carried out at low loads (25% part load), and a reference intake temperature of 550 K is used to preheat the air-fuel mixture. The GRI-3.0 chemical reaction mechanism involving 53 species and 325 reactions is used for 1-D simulations describing the combustion process fueled with methane and hydrogen added methane. By changing the variables, including compression ratio, excess air ratio, and hydrogen content, the combustion behavior is investigated and discussed. The results show that an increase in compression ratio resulted in a faster start of combustion and caused higher in cylinder pressure and heat-release rate. When the excess air ratio was increased, the start of combustion was delayed and lower in-cylinder pressure and heat release rate were observed. The results were similar for varying compression ratios. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available