4.7 Article

Comparison of the different artificial neural networks in prediction of biomass gasification products

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 43, Issue 11, Pages 5992-6003

Publisher

WILEY
DOI: 10.1002/er.4682

Keywords

artificial neural network; biomass; feature selection; gasification; NARX; time series

Ask authors/readers for more resources

In this study, artificial neural networks (ANNs) and a nonlinear autoregressive exogenous (NARX) neural network model were employed in order to model a fixed bed downdraft gasification. The relation between the feature group and the regression performance was investigated. First, feature group consists of the equivalence ratio (ER), air flow rate (AF), and temperature distribution (T0-T5) obtained from the fixed bed downdraft gasifiers, while the second group includes ultimate and proximate values of biomasses, ER, AF, and the reduction temperature (T0). Models constructed to predict the syngas composition (H-2, CO2, CO, CH4) and calorific value. Experimental gasification data that involve 3831 data samples that belong to pinecone and wood pellet were used for training the ANNs. Different ANN architecture and NARX time series model have been constructed to examine the prediction accuracy of the models. The results of the ANN models were consistent with the experimental data (R-2 > 0.99). The overall score of NARX time series networks is found to be higher than other architecture types. A successful method is proposed to reduce the number of features, and the effect of the features on the prediction capability was examined by calculating the relative importance index using the Garson's equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available