4.7 Article

Intramolecular Hydrogen Bonding Facilitates Electrocatalytic Reduction of Nitrite in Aqueous Solutions

Journal

INORGANIC CHEMISTRY
Volume 58, Issue 14, Pages 9443-9451

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.9b01274

Keywords

-

Funding

  1. National Science Foundation [CHE-1566258]

Ask authors/readers for more resources

This work reports a combined experimental and computational mechanistic investigation into the electrocatalytic reduction of nitrite to ammonia by a cobalt macrocycle in an aqueous solution. In the presence of a nitrite substrate, the Co(III) precatalyst, [Co(DIM)(NO2)(2)](+) (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene), is formed in situ. Cyclic voltammetry and density functional theory (DFT) calculations show that this complex is reduced by two electrons, the first of which is coupled with nitrite ligand loss, to provide the active catalyst. Experimental observations suggest that the key N-O bond cleavage step is facilitated by intramolecular proton transfer from an amine group of the macrocycle to a nitro ligand, as supported by modeling several potential reaction pathways with DFT. These results provide insights into how the combination of a redox active ligand and first-row transition metal can facilitate the multiproton/electron process of nitrite reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available