4.4 Article

Adaptive neural network-based fault-tolerant trajectory-tracking control of unmanned surface vessels with input saturation and error constraints

Journal

IET INTELLIGENT TRANSPORT SYSTEMS
Volume 14, Issue 5, Pages 356-363

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-its.2019.0221

Keywords

remotely operated vehicles; control nonlinearities; neurocontrollers; uncertain systems; Lyapunov methods; adaptive control; marine vehicles; trajectory control; fault tolerant control; USV; input saturation; error constraints; tan-type barrier Lyapunov function; neural networks; adaptive technique; actuator fault-tolerant controller; fault effects; adaptive neural network-based fault-tolerant trajectory-tracking control; unmanned surface vessel; adaptive fault-tolerant tracking control; smart ocean; model uncertainty; backstepping method; external disturbances

Funding

  1. National Natural Science Foundation of China [U1713205, 61803119]

Ask authors/readers for more resources

The unmanned surface vessel (USV) plays an important role in smart ocean. This study proposes an adaptive fault-tolerant tracking control for USVs in the presence of input saturations and error constraints. A tan-type barrier Lyapunov function is utilised for the error constraints and the neural networks are employed to treat the model uncertainty. Moreover, the adaptive technique combined with the backstepping method not only enables the actuator fault-tolerant controller to address the fault effects but also handles the external disturbances and input saturations. The proposed control approach can track the desired trajectory with error constraints and the system is guaranteed to be uniformly bounded under certain actuator failure. Numerical simulation is carried out to verify the effectiveness of this control strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available