4.6 Article

Power conversion efficiency and resistance tunability in coil-magnetoelectric gyrators

Journal

APPLIED PHYSICS LETTERS
Volume 109, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4967846

Keywords

-

Ask authors/readers for more resources

The power efficiency and resistance tunability of magnetoelectric (ME) gyrators consisting of two-phase magnetostrictive-piezoelectric ME longitudinal-transverse (L-T) mode sandwich laminates and coils, have been studied. The copper wire coil provided an inductance-based coil port (C oil(P)) and the piezoelectric layer of the ME laminate provided a capacitance-based ME port (MEP). The device behaved as a 2-port 4-wire ME gyrator. The current-to-voltage and voltage-to-current (I-V and V-I, respectively) conversion ratios, resistance-inductance/capacitance tunabilities (TR-L and TR-C, respectively) and direct/converse power efficiencies (PED and PEC, respectively) were measured. Maximum values of 1454 V/A and 0.468 mA/V for the I-V and V-I conversion ratios, 76 mu H/Omega and 0.17 pF/Omega for TR-L and TR-C coefficients, and similar to 35% for both PED and PEC were found by measuring the performance characteristics. Compared with the electromagnetic and piezoelectric transformers, ME gyrators have good input and output characteristics that change the capacitance and inductance features of the input and output ports. Our findings open a promising direction for developing a generation of converters for power electronics. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available