4.7 Article

Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 68, Issue 6, Pages 5379-5390

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2019.2908425

Keywords

Driver behavior; driver distraction; convolutional neural network; transfer learning

Funding

  1. Young Elite Scientist Sponsorship Program by CAST [2017QNRC001]
  2. SUG-NAP of Nanyang Technological University, Singapore [M4082268.050]

Ask authors/readers for more resources

Driver decisions and behaviors are essential factors that can affect the driving safety. To understand the driver behaviors, a driver activities recognition system is designed based on the deep convolutional neural networks (CNN) in this paper. Specifically, seven common driving activities are identified, which are the normal driving, right mirror checking, rear mirror checking, left mirror checking, using in-vehicle radio device, texting, and answering the mobile phone, respectively. Among these activities, the first four are regarded as normal driving tasks, while the rest three are classified into the distraction group. The experimental images are collected using a low-cost camera, and ten drivers are involved in the naturalistic data collection. The raw images are segmented using the Gaussian mixture model to extract the driver body from the background before training the behavior recognition CNN model. To reduce the training cost, transfer learning method is applied to fine tune the pre-trained CNN models. Three different pre-trained CNN models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted and evaluated. The detection results for the seven tasks achieved an average of 81.6% accuracy using the AlexNet, 78.6% and 74.9% accuracy using the GoogLeNet and ResNet50, respectively. Then, the CNN models are trained for the binary classification task and identify whether the driver is being distracted or not. The binary detection rate achieved 91.4% accuracy, which shows the advantages of using the proposed deep learning approach. Finally, the real-world application are analyzed and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available