4.7 Article

Resilience Analysis of DC Microgrids Under Denial of Service Threats

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 34, Issue 4, Pages 3199-3208

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2019.2897499

Keywords

DC microgrids; resilience; cyber physical systems; denial of service (DoS); stability

Funding

  1. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability [DE-AC02-06CH11357]

Ask authors/readers for more resources

This paper develops a resilience analysis framework to study the fault ride-through capability of direct current (DC) microgrids in unknown denial of service (DoS) cyber incidents. DoS can be a frequent threat to DC microgrids with advanced controllers that hinge on active information exchanges: it can paralyze data communications and cause control ineptness or even system instability. Furthermore, we show that temporal DoS incidents render the DC microgrid cyber-physical topology and parameters time-varying and cause them to jump between faulty conditions. As existing DC microgrid stability analysis results are primarily developed from time-invariant systems, they might not be valid for the DoS interrupted systems. In this paper, we seek to study whether a DC microgrid is resilient against time-varying unknown DoS incidents. The problem is formulated as a stability analysis problem for a system with randomly switching dynamics. Scalable conditions are developed to provide provable resilience guarantees. In addition, we exploit the special structure of the conditions to yield quantified resilience measure by convex optimization techniques. The measure can be used for the evaluation of the resilience of different DC microgrid design against DoS incidents. We demonstrate the effectiveness of the proposed work using simulation case studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available