4.6 Article

Localized Linear Regression in Networked Data

Journal

IEEE SIGNAL PROCESSING LETTERS
Volume 26, Issue 7, Pages 1090-1094

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LSP.2019.2918933

Keywords

Compressed sensing; learning systems; machine learning; prediction methods; optimization; statistical learning

Ask authors/readers for more resources

The network Lasso (nLasso) has been proposed recently as an efficient learning algorithm for massive networked data sets (big data over networks). It extends the well-known least absolute shrinkage and selection operator (Lasso) from learning sparse (generalized) linear models to network models. Efficient implementations of the nLasso have been obtained using convex optimization methods lending to scalable message passing protocols. In this letter, we analyze the statistical properties of nLasso when applied to localized linear regression problems involving networked data. Our main result is a sufficient condition on the network structure and available label information such that nLasso accurately learns a localized linear regression model from a few labeled data points. We also provide an implementation of nLasso for localized linear regression by specializing a primal-dual method for solving the convex (non-smooth) nLasso problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available