4.5 Article

Incorporating synoptic-scale climate signals for streamflow modelling over the Mediterranean region using machine learning models

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02626667.2019.1632460

Keywords

climate signal information; machine learning models; streamflow prediction; Mediterranean region

Ask authors/readers for more resources

Understanding streamflow patterns by incorporating climate signal information can contribute remarkably to the knowledge of future local environmental flows. Three machine learning models, the multivariate adaptive regression splines (MARS), the M5 Model Tree and the least squares support vector machine (LSSVM) are established to predict the streamflow pattern over the Mediterranean region of Turkey (Besiri and Baykan stations). The structure of the predictive models is built using synoptic-scale climate signal information and river flow data from antecedent records. The predictive models are evaluated and assessed using quantitative and graphical statistics. The correlation analysis demonstrates that the North Pacific (NP) and the East Central Tropical Pacific Sea Surface Temperature (Nino3.4) indices have a substantial influence on the streamflow patterns, in addition to the historical information obtained from the river flow data. The model results reveal the utility of the LSSVM model over the other models through incorporating climate signal information for modelling streamflow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available