4.7 Article

Thorium-poor monazite and columbite-(Fe) mineralization in the Gleibat Lafhouda carbonatite and its associated iron-oxide-apatite deposit of the Ouled Dlim Massif, South Morocco

Journal

GONDWANA RESEARCH
Volume 77, Issue -, Pages 19-39

Publisher

ELSEVIER
DOI: 10.1016/j.gr.2019.06.011

Keywords

Carbonatite; IOA deposit; REE mineralization; Columbite; Reguibat Shield

Funding

  1. Bundesanstalt fur Geowissenschaften und Rohstoffe (BGR
  2. Germany)

Ask authors/readers for more resources

Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4 wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78 wt% Nb2O5, 7 wt% Ta2O5 and 1.6 wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction. (C) 2019 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available