4.7 Article

Magnesite formation in playa environments near Atlin, British Columbia, Canada

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 255, Issue -, Pages 1-24

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2019.04.008

Keywords

magnesite; hydromagnesite; playas; mineral formation rates; CO2 sequestration

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

The hydromagnesite-magnesite playas near Atlin, British Columba, Canada are unique Mg-carbonate depositional environments that have formed at Earth's surface since the end of the last deglaciation. This study elucidates the mechanisms, pathways, and rates of magnesite (MgCO3) formation in these near-surface environments, which are challenging to study in short-duration laboratory experiments because magnesite precipitation is extremely slow at low temperature. The Atlin playas, having formed over millennia, contain abundant magnesite as well as a suite of other Mg- and Ca-carbonate minerals. Mineralogical and textural evidence demonstrate that hydromagnesite [Mg-5(CO3)(4)(OH)(2)center dot 4H(2)O] forms at least in part through transformation of more hydrated phases, e.g., lansfordite (MgCO3 center dot 5H(2)O). Deposition of these hydrated Mg-carbonate minerals is limited by the evaporative flux, and thus, is effectively transport-controlled at the scale of the playas. Magnesite is a spatially distinct phase from hydromagnesite and its crystal morphology varies with depth indicating variable crystal growth mechanisms and precipitation rates. Particle size distributions and mineral abundance data indicate that magnesite formation is nucleation-limited. Furthermore, mineralogical data as well as stable and radiogenic isotope data support magnesite formation starting after the majority of hydromagnesite had been deposited likely resulting from long induction times and slow precipitation rates. Hydrated Mg-carbonate minerals precipitate relatively rapidly and control pore water chemistry while magnesite remains highly supersaturated, and thus, is reaction-controlled. This difference in controlling regime allows for magnesite abundance to increase over time without the loss of hydromagnesite such as through its transformation, which the data also does not support. We estimate rates of magnesite formation (nucleation + crystal growth) in the range of 10(-17) to 10(-16) mol/cm(2)/s over approximately 8000 years. This study helps to elucidate the geochemical conditions needed to form Mg-carbonate minerals in ancient and modern sedimentary environments and provides insights into facilitating long-term storage of anthropogenic CO2 within Mg-carbonate minerals. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available