4.5 Article

Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ x Leiocassis longirostris♂)

Journal

FISH PHYSIOLOGY AND BIOCHEMISTRY
Volume 45, Issue 5, Pages 1627-1647

Publisher

SPRINGER
DOI: 10.1007/s10695-019-00651-4

Keywords

Tryptophan; Hybrid catfish; Growth performance; Antioxidant capacity; Appetite-related genes; GH-IGF axis

Funding

  1. National Natural Science Foundation of China [31702362]
  2. Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province, China [2015JY0067]
  3. Sichuan Province Science and Technology Support Program, China [2014FZ0026]

Ask authors/readers for more resources

The 56-day feeding trial was carried out to investigate the effects of dietary tryptophan (Trp) on growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related genes expression of hybrid catfish (Pelteobagrus vachelli female x Leiocassis longirostris male). A total of 864 hybrid catfish (21.82 +/- 0.14 g) were fed six different experimental diets containing graded levels of Trp at 2.6, 3.1, 3.7, 4.2, 4.7, and 5.6 g kg(-1) diet. The results indicated that dietary Trp increased (P < 0.05) (1) final body weight, percent weight gain, specific growth rate, feed intake, feed efficiency, and protein efficiency ratio; (2) fish body protein, lipid and ash contents, protein, and ash production values; (3) stomach weight, stomach somatic index, liver weight, intestinal weight, length and somatic index, and relative gut length; and (4) activities of pepsin in the stomach; trypsin, chymotrypsin, lipase, and amylase in the pancreas and intestine; and gamma-glutamyl transpeptidase, Na+, K+-ATPase, and alkaline phosphatase in the intestine. Dietary Trp decreased malondialdehyde content, increased antioxidant enzyme activities and glutathione content, but downregulated Keap1 mRNA expression, and upregulated the expression of NPY, ghrelin, GH, GHR, IGF1, IGF2, IGF1R, PIK3Ca, AKT1, TOR, 4EBP1, and S6K1 genes. These results indicated that Trp improved hybrid catfish growth performance, digestive and absorptive ability, antioxidant status, and appetite and GH-IGF axis-related gene expression. Based on the quadratic regression analysis of PWG, SGR, and FI, the dietary Trp requirement of hybrid catfish (21.82-39.64 g) was recommended between 3.96 and 4.08 g kg(-1) diet (9.4-9.7 g kg(-1) of dietary protein).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available