4.4 Article

Energy-dependent diffusion in a soft periodic Lorentz gas

Journal

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volume 228, Issue 1, Pages 143-160

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjst/e2019-800136-8

Keywords

-

Funding

  1. Mexican National Council for Science and Technology (CONACyT) [262481]
  2. Office of Naval Research Global
  3. London Mathematical Laboratory,

Ask authors/readers for more resources

The periodic Lorentz gas is a paradigmatic model to examine how macroscopic transport emerges from microscopic chaos. It consists of a triangular lattice of circular hard scatterers with a moving point particle. Recently this system became relevant as a model for electronic transport in low-dimensional nanosystems such as molecular graphene. However, to more realistically mimic such dynamics, the hard Lorentz gas scatterers should be replaced by soft potentials. Here we study diffusion in a soft Lorentz gas with Fermi potentials under variation of the total energy of the moving particle. Our goal is to understand the diffusion coefficient as a function of the energy. In our numerical simulations we identify three different dynamical regimes: (i) the onset of diffusion at small energies; (ii) a transition where for the first time a particle reaches the top of the potential, characterized by the diffusion coefficient abruptly dropping to zero; and (iii) diffusion at high energies, where the diffusion coefficient increases according to a power law in the energy. All these different regimes are understood analytically in terms of simple random walk approximations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available