4.7 Article

Heterodimeric Rifampicin-Tobramycin conjugates break intrinsic resistance of Pseudomonas aeruginosa to doxycycline and chloramphenicol in vitro and in a Galleria mellonella in vivo model

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 174, Issue -, Pages 16-32

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2019.04.034

Keywords

Adjuvant; Amphiphilic aminoglycoside; Antipseudomonal; Galleria mellonella; Hybrid; Rifampicin; Synergy

Funding

  1. Natural Sciences and Engineering Research Council of Canada [2018-06047]

Ask authors/readers for more resources

Intrinsic resistance in Pseudomonas aeruginosa, defined by chromosomally encoded low outer membrane permeability and constitutively over-expressed efflux pumps, is a major reason why the pathogen is refractory to many antibiotics. Herein, we report that heterodimeric rifampicin-tobramycin conjugates break this intrinsic resistance and sensitize multidrug and extensively drug-resistant P. aeruginosa to doxycycline and chloramphenicol in vitro and in vivo. Tetracyclines and chloramphenicol are model compounds for bacteriostatic effects, but when combined with rifampicin-tobramycin adjuvants, their effects became bactericidal at sub MIC levels. Potentiation of tetracyclines correlates with the SAR of this class of drugs and is consistent with outer membrane permeabilization and efflux pump inhibition. Overall, this strategy finds new uses for old drugs and presents an avenue to expand the therapeutic utility of legacy antibiotics to recalcitrant pathogens such as P. aeruginosa. (C) 2019 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available