4.7 Article

Ginkgo biloba attenuates aluminum lactate-induced neurotoxicity in reproductive senescent female rats: behavioral, biochemical, and histopathological study

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 26, Pages 27148-27167

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-05743-5

Keywords

Aluminum; Oxidative stress; Reproductive senescence; A beta aggregation; Memory loss; Ginkgo biloba extract

Funding

  1. University Research fellowship [1241/Estt-I]

Ask authors/readers for more resources

Extensive use of aluminum (Al) in industry, cooking utensils, and wrapping or freezing the food items, due to its cheapness and abundance in the environment, has become a major concern. Growing evidence supports that environmental pollutant Al promotes the aggregation of amyloid beta (A beta) in the brain, which is the main pathological marker of Alzheimer's disease (AD). Further, AD- and Al-induced neurotoxic effects are more common among women following reproductive senescence due to decline in estrogen. Though clinically Ginkgo biloba extract (GBE) has been exploited as a memory enhancer, its role in Al-induced neurotoxicity in reproductive senescent female rats needs to be evaluated. Animals were exposed to intraperitoneal dose (10 mg/kg b.wt) of Al and oral dose (100 mg/kg b.wt.) of GBE daily for 6 weeks. A significant decline in the Al-induced A beta aggregates was observed in hippocampal and cortical regions of the brain with GBE supplementation, as confirmed by thioflavin (ThT) and Congo red staining. GBE administration significantly decreased the reactive oxygen species, lipid peroxidation, nitric oxide, and citrulline levels in comparison to Al-treated rats. On the contrary, a significant increase in the reduced glutathione, GSH/GSSG ratio as well as in the activities of antioxidant enzymes was observed with GBE administration. Based on the above results, GBE prevented the neuronal loss in the hippocampus and cortex, hence caused significant improvement in the learning and memory of the animals in terms of AChE activity, serotonin levels, Morris water maze, and active and passive avoidance tests. In conclusion, GBE has alleviated the behavioral, biochemical, and histopathological alterations due to Al toxicity in rats. However, molecular studies are going on to better understand the mechanism of GBE protection against the environmental toxicant Al exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available