4.7 Article

Doping TiO2with CuSO4enhances visible light photocatalytic activity for organic pollutant degradation

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 20, Pages 24604-24613

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-05789-5

Keywords

Persistent organic pollutants; Wastewater treatment; Visible light photocatalyst; Nanotechnology; Advanced oxidation process

Funding

  1. Department of Science and Technology, Republic of the Philippines [none] Funding Source: Medline
  2. National Science Council [NSC 101-2923-E-041-001-MY2] Funding Source: Medline

Ask authors/readers for more resources

Photocatalysis is one of the most promising advanced oxidation processes due to the capability of solid catalyst to continuously produce oxidant species under light irradiation. The use of conventional UV lamps is high cost intensive, which undermines the possible implementation in developing countries. Visible light active photocatalysts can overcome these challenges and find a market opportunity for competitive technology implementation. This work proposes the synthesis of visible light active catalyst following a facile sol-gel synthesis that introduces CuSO(4)as dopant in TiO2. Results present complete abatement of methylene blue in 120 min of treatment under 50 mW cm(-2)of blue light (lambda = 450 nm), while commercial P25 TiO(2)presented null abatement under identical conditions. Synthesis parameters including dopant level and calcination temperature allowed defining optimum synthesis conditions based on material characteristics modification and catalytic activity enhancement. A doping level of 0.21 mol% CuSO(4)was identified as optimum condition to enable visible light photocatalysis of doped TiO(2)catalysts calcined at 300 degrees C. Finally, operational parameters were evaluated defining a wide range of pH operation under 3.0 g L(-1)of catalyst dose to treat up to 20 g L(-1)of highly recalcitrant phenothiazine dye. These optimum conditions allowed complete dye removal under visible light after 120 min of treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available