4.7 Article

Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 26, Pages 26869-26882

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-05931-3

Keywords

Fe-C micro-electrolysis; Textile wastewater; Scrap iron; Effluent organic matter; Degradation pathway; Reduction and oxidation

Funding

  1. National Natural Science Foundation of China [21707090]
  2. Chinese Postdoctoral Science Foundation [2017M611590]
  3. Shanghai Natural Science Foundation [14ZR1428900]

Ask authors/readers for more resources

The degradation of organic contaminants in actual textile wastewater was carried out by iron carbon (Fe-C) micro-electrolysis. Different Fe-C micro-electrolysis systems (SIPA and SISA) were established by using scrap iron particle (SIP) and scrap iron shaving (SIS) as anode materials. The optimal condition of both systems was obtained at the initial pH of 3.0, dosage of 30 g/L and Fe/C mass ratio of 1:1. Commercial spherical Fe-C micro-electrolysis material (SFC) was used for comparison under the same condition. The results indicated that total organic carbon (TOC) and chroma removal efficiencies of SIPA and SISA were superior to that of SFC. Total iron concentration in solution and XRD analysis of electrode materials revealed that the former showed relatively high iron corrosion intensity and the physicochemical properties of scrap iron indeed affected the treatment capability. The UV-vis and 3DEEM analysis suggested that the pollutants degradation was mainly attributed to the combination of reduction and oxidation. Furthermore, the potential degradation pathways of actual textile wastewater were illustrated through the GC-MS analysis. Massive dyes, aliphatic acids, and textile auxiliaries were effectively degraded, and the SIPA and SISA exhibited higher performance on the degradation of benzene ring and dechlorination than that by SFC. In addition, SIPA and SISA exhibited high stability and excellent reusability at low cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available