4.8 Article

Polarity-Dependent Chemical Characteristics of Water-Soluble Organic Matter from Laboratory-Generated Biomass-Burning Revealed by 1-Octanol-Water Partitioning

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 53, Issue 14, Pages 8047-8056

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b01691

Keywords

-

Funding

  1. National Research Foundation Singapore under its Singapore NRF Fellowship scheme (National Research Fellow Award) [NRF2012NRF-NRFF001-031]
  2. NRF Campus for Research Excellence and Technological Enterprise (CREATE) Programme
  3. Nanyang Technological University
  4. Research Institute for Humanity and Nature (RIHN) [14200117]
  5. Earth Observatory of Singapore (EOS)

Ask authors/readers for more resources

Polarity distribution of water-soluble organic matter (WSOM) is an important factor in determining the hygroscopic and cloud nucleation abilities of organic aerosol particles. We applied a novel framework to quantitatively classify WSOM based on the 1-octanol-water partition coefficient (K-OW), which often serves as a proxy of polarity. In this study, WSOM was generated in a laboratory biomass-burning experiment by smoldering of Indonesian peat and vegetation samples. The fractionated WSOM was analyzed using a UV-visible spectrophotometer, spectrofluorometer, and time-of-flight aerosol chemical speciation monitor. Several deconvolution methods, including positive matrix factorization, parallel factor analysis, and least-squares analysis, were applied to the measured spectra, resulting in three classes of WSOM. The highly polar fraction of WSOM, which predominantly exists in the range of log K-OW < 0, is highly oxygenated and exhibits similar optical properties as those of light-absorbing humic-like substances (HULIS, termed after the humic substances due to the similarity in chemical characteristics). WSOM in the least-polar fraction, which mainly distributes in log K-OW > 1, mostly consists of hydrocarbon-like and high molecular weight species. In between the most- and least-polar fraction, WSOM in the marginally polar fraction likely contains aromatic compounds. The analyses have also suggested the existence of HULIS with different polarities. Comparison with previous studies indicates that only WSOM in the highly polar fraction (log K-OW < 0) likely contributes to water uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available