4.7 Article

Pharmaceuticals, herbicides, and disinfectants in agricultural water sources

Journal

ENVIRONMENTAL RESEARCH
Volume 174, Issue -, Pages 1-8

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2019.04.011

Keywords

Pharmaceuticals; PPCPs; Herbicides; Atrazine; Climate change; LC/MS; LC-MS/MS; Reclaimed water; Waste water

Funding

  1. United States Department of Agriculture, National Institute of Food and Agriculture (NIFA) [2016-68007-25064]

Ask authors/readers for more resources

Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available