4.2 Article

Drag coefficient parameter estimation for aquaculture systems

Journal

ENVIRONMENTAL FLUID MECHANICS
Volume 19, Issue 4, Pages 989-1003

Publisher

SPRINGER
DOI: 10.1007/s10652-019-09697-7

Keywords

Aquaculture; EFDC; Numerical modeling; Parameter estimation; Turbulence

Funding

  1. European Union's Horizon 2020 research and innovation program [773330]

Ask authors/readers for more resources

The flow conditions in and around a suspended canopy, resembling those formed by aquaculture structures such as rafts cages and longlines, were modeled using an augmented version of the hydrodynamic model Environmental Fluid Dynamics Code. The model was calibrated using vertical profiles of horizontal velocities, Reynolds stresses, and turbulent kinetic energies obtained from prior laboratory flume experiments. The parameter estimation code, PEST, was used to optimize various model parameters including horizontal momentum diffusivity, vertical eddy viscosity, turbulence closure constants, and, most importantly, depth-dependent drag coefficients. An increasing average drag coefficient was observed with decreasing canopy blockage ratio, and an empirical relationship for the vertical variation of drag coefficient was developed that may be appropriate for use in full-scale models of aquaculture systems. Overall, the calibrated canopy-turbulence parameters and drag-coefficient empiricisms may yield improved predictions of alterations to hydrodynamic and nutrient-transport conditions due to various aquaculture structures. Such predictions will help develop methods to minimize environmental impacts and to increase production from aquaculture farms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available