4.6 Article

Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries

Journal

ELECTROCHIMICA ACTA
Volume 310, Issue -, Pages 230-239

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.04.124

Keywords

Hollow NiCoSe2 microspheres; N-doped carbon; Pseudo capacitive behaviour; Sodium ion batteries; High-rate

Ask authors/readers for more resources

Transition metal selenides (TMSs) have been considering as a kind of promising alternative anode materials for the application of sodium ion batteries due to their high electrical conductivity and high capacity. Here, hollow NiCoSe2 microspheres was prepared via an easy hydrothermal method, followed by the dopamine derived N-doped carbon coated which formed the hollow NiCoSe2@C composite. Asprepared hollow NiCoSe2@C composite has been first used as a new anode material for sodium ion batteries (SIBs). Our selenides displays a quite good electrochemical sodium storage performance. For example, the reversible capacity of as-prepared hollow NiCoSe2@C composite electrode can be maintained at 464.7 mAh g(-1) at a current density of 100mA g(-1) after 200 cycles. Moreover, the rate performance of the hollow NiCoSe2@C composite is outstanding. The reversible capacities of 425.3, 420.8, 403.2, 394.7, 378.7, 367.8 and 337.5mAh g(-1) can be achieved at the current densities of 100, 200, 500, 1000, 2000, 3000 and 5000mA g(-1), respectively. Meanwhile, hollow NiCoSe2@C composite electrode exhibits a high discharge capacity of 338 mAh g(-1) at a relatively high current density of 0.5 A g(-1) after 250 cycles. In addition, the kinetic analysis of electrochemical Na thorn storage properties of the hollow NiCoSe2@C composite demonstrates that the extrinsic pseudo capacitive behaviour contributes significantly to excellent rate performance and good long-term cycling life. This method can be used to modify the morphologies and structures of the other TMSs for the development of new anode materials as anode materials in the application of sodium ion batteries. (c) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available