4.7 Article

Timescale of overturn in a magma ocean cumulate

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 516, Issue -, Pages 25-36

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2019.03.037

Keywords

magma ocean; overturn; mantle dynamics; linear stability

Funding

  1. French Agence Nationale de la Recherche [ANR-15-CE31-0018-01]

Ask authors/readers for more resources

The formation and differentiation of planetary bodies are thought to involve magma oceans stages. We study the case of a planetary mantle crystallizing upwards from a global magma ocean. In this scenario, it is often considered that the magma ocean crystallizes more rapidly than the time required for convection to develop in the solid cumulate. This assumption is appealing since the temperature and composition profiles resulting from the crystallization of the magma ocean can be used as an initial condition for convection in the solid part. We test here this assumption with a linear stability analysis of the density profile in the solid cumulate as crystallization proceeds. The interface between the magma ocean and the solid is a phase change interface. Convecting matter arriving near the interface can therefore cross this boundary via melting or freezing. We use a semi-permeable condition at the boundary between the magma ocean and the solid to account for that phenomenon. The timescale with which convection develops in the solid is found to be several orders of magnitude smaller than the time needed to crystallize the magma ocean as soon as a few hundreds kilometers of cumulate are formed on a Mars to Earth-size planet. The phase change boundary condition is found to decrease this timescale by several orders of magnitude. For a Moon-size object, the possibility of melting and freezing at the top of the cumulate allows the overturn to happen before complete crystallization. The convective patterns are also affected by melting and freezing at the boundary: the linearly most-unstable mode is a degree-1 translation mode instead of the approximately aspect-ratio-one convection rolls found with classical non-penetrative boundary conditions. The first overturn of the crystallizing cumulate on Mars and the Moon could therefore be at the origin of their observed degree-1 features. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available